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A technique called quantum topological molecular similarity (QTMS) was recently proposed [J. Chem. Inf. Comput.
Sci., 2001, 41, 764] in order to construct a variety of medicinal, ecological and physical organic QSAR/QSPRs, based
on modern ab initio wave functions of geometry optimised molecules, in combination with quantum chemical
topology (QCT). The current abundance of computing power can be utilised to inject realistic descriptors into
QSAR/QSPRs. In previous work [J. Chem. Soc., Perkin Trans. 2, 2002, 1231] it was proven that a set of Hammett
constants (rp, rm, rI and r0

p) for a sizeable set of mono- and polysubstituted carboxylic acids can be replaced by QCT
bond descriptors. Using QTMS and proper statistical validation we examined seven data sets in total. The first three
sets (para-substituted phenols (r−), substituted toluenes (r+) and bromophenethylamines (r+)) corroborate that a
wider class of Hammett constants can also be replaced by QCT descriptors. A fourth set (benzyl radicals) focuses on
non-Hammett behaviour being superimposed on Hammett behaviour. QCT descriptors selectively correlate with
Hammett behaviour. The QTMS analysis of the last three sets (toxicity of benzyl alcohols, chromatographic capacity
factors of chalcones and herbicidal activity of 5-chloro-2,3-dicyanopyrazines) screens for false positives. This test is
successfully passed in that QCT descriptors fail when lipophilicity/hydrophobicity is in charge. Hence, overall, the
discriminatory capacity of QCT descriptors is established, in detecting Hammett behaviour and specifically replacing
the Hammett constants by more modern and non-empirical descriptors.

Introduction

The Hammett substituent constants, which quantify the electron
withdrawing or donating capabilities of a given substituent,
have enjoyed enormous success as structural descriptors in
quantitative structure–activity relationships (QSARs) and quan-
titative structure–property relationships (QSPRs).1 The physical
chemical database of Hansch and co-workers contains over 8900
QSARs, of which 8875 are based on the r parameters.2 It is
apparent that electronic effects are of considerable importance
in describing chemical reactions, and hence biological systems.

Some time ago3 we used for the first time quantum chemical
descriptors defined by quantum chemical topology (QCT)4–7

to set up a QSAR to predict r constants and, therefore, also
the acidity of substituted benzoic acids. Other than being a
generalisation of quantum mechanics to subspaces8–10 QCT is
widely appreciated as a theory that extracts chemical insight
from modern wave functions.11,12 The acronym QTMS (quantum
topological molecular similarity) covered the initial develop-
ment and intention of QCT to provide an economic alternative
to Carbo-like indices.13 It was proven that superposition of
(complete molecular) electron densities is not necessary to set up
a successful QSAR. Instead, as explained below, special points
in 3D space sufficed.

Although QCT descriptors could have been fed into molecular
similarity indices, they immediately appeared in a “supervised”
regression context. In other words, models14 were constructed
using partial least squares (PLS) for a variety of medicinal15–17

and ecological18–21 QSARs. The estimation of the pKa of
carboxylic acids, anilines and phenols22 and prediction of rp,
rm, rI and r0

p parameters of mono-3 and polysubstituted benzoic
acids, phenylacetic acids and bicyclo carboxylic acids19 feature as
examples of physical organic properties. The QTMS approach
inspired work in other groups (e.g.ref. 23–24). A strong and
important feature of QTMS is that it is able to localise a part
in the molecule where the chemical change associated with
the observed activity actually happens. For example, the O–H

bond is highlighted as the active center in the deprotonation of
carboxylic acids if their acidity is studied.

QTMS typically uses so-called bond critical point (BCP)
properties, as in this study, but (integrated) atomic properties can
also feature. BCPs are 3D saddle points in the electron density,
located by computation25 and appearing at the boundary
between two QCT atoms. Certain functions, such as the electron
density, are evaluated at each BCP, thereby characterising the
bond that the BCP represents. A BCP can be represented
by an arbitrarily high number of properties, which serve as
vector components locating the BCP as a “quantum chemical
fingerprint” in BCP-space.3

In view of the ubiquity of the Hammett parameters in
formulating QSARs, coupled with the promising results ob-
tained so far in capturing substituent effects, we aimed at
extending the range of r constants investigated by QTMS. In
addition, the range of systems is hereby also increased, beyond
the domain of carboxylic acid datasets. We examined four
data sets: para-substituted phenols (r−), bromophenethylamines
(r+), substituted toluenes (r+), and benzyl radicals in order to
investigate non-Hammett behaviour. We will show that excellent
statistics are obtained for the first three sets, and that the active
centers highlighted make sense. The last set is a “false positive”
test, adopted to see whether QTMS still performs well when
conventional “polar effect” Hammett constants fail. We will
show that QTMS passes this test and hence operates successfully
for the right reasons.

Methods
The full details of how QTMS operates have been published
before13 and repeated in the applications mentioned in the
Introduction. In the interest of making this paper self-contained
it is useful to summarise the procedure here.

Geometry-optimised wave functions were generated at HF/6-
31G*//HF/6-31G* level using the program GAUSSIAN98.26

In previous QTMS work we varied the level of theory betweenD
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AM1 and B3LYP/6-311 + G(2d,p)//B3LYP/6-311 + G(2d,p),
which obviously lead to substantial differences in consumed
CPU time. In our experience, HF/6–31G*//HF/6–31G* is a
good compromise in terms of speed and reliability. As shown in
the Results section, excellent statistical correlations are obtained
at this level, directly corroborating this choice. This success
suggests that the approximations this level introduces generate
systematic errors, which are largely absorbed by the differential
nature of a QSAR. Ultimately, we are only interested in the
relative differences that substituents bring in.

The program MORPHY9827 computes the following four
BCP properties for each BCP in each molecule of the congeneric
set of compounds: the electron density, the Laplacian of the
electron density, the ellipticity and the kinetic energy density
K(r). The definition and meaning of these quantities has been
given elsewhere.7,16

Subsequently the program SIMCA-P28 performs a PLS29

analysis directly on the BCP descriptors. Each latent variable
(LV) is created from a linear combination of the original
independent variables and in this respect LVs are similar to
principal components30 (but now in a supervised context). This
analysis yields four statistics, which are used to judge the quality
and validity of the model. The first two statistics provide a
measure of the quality of the model and are the correlation
coefficient, r2, and the cross-validated correlation coefficient, q2,
which we will explicitly quote for each QSAR set. The final two
statistics obtained provide a safeguard against the possibility
that the model may have been obtained by chance: the response
data is repeatedly randomised and a re-run (at least 10 times)
of the PLS analysis carried out. We do not quote these statistics
but confirm that according to the prescription of Wold and co-
workers29 all QSAR sets studied here pass this test.31

In order to see if the reaction center can be located,
the program SPSS32 extracted PCs from the BCP properties
associated with each bond and a second PLS regression was
performed, now operating on the PCs. This time we examine
the variables important to the projection (VIPs), which are also
generated by SIMCA-P. The VIPs give the relative importance
of each PC contributing to the model, and PCs with higher VIP
scores are more relevant in explaining the activity. Since each
PC is associated with a particular bond this allows one to rank
the importance of each bond contributing to the model. It is
assumed that the “active center” of the molecules consists of the
bonds associated with the PCs having the highest VIP values. To
summarise, the first PLS analysis yields the regression statistics,
which assess the quality and validity of the model, whereas the
second PLS analysis focuses upon the VIP values of the PCs in
order to assist interpretation of the mode of action of the QSAR.

In addition, a genetic algorithm (GA) selected individual
BCP properties to be included as descriptor variables in a third
PLS analysis. The purpose of this was twofold: to optimise
the regression statistics, and to see if the GA can be used to
locate the active center. Variable selection precedes the PLS
fitting but occurs immediately after the BCP properties have
been calculated. The MATLAB genalg.m routine from the
PLS_toolbox33 selected the variables, using a GA population
size of 256, a mutation rate of 0.003, and a maximum number
of generations of 200. The fitness function was defined to be the
cross-validation coefficient, q2, from a PLS analysis performed
on the dataset using variables selected by the GA.

Results and discussion
para-Substituted phenols and r−

The first set studied demonstrates how QTMS can be extended
to incorporate through-resonance effects. Despite the enormous
success of the original Hammett equation, deviations were
observed for systems where the reaction center is in direct
conjugation with substituents capable of accepting or donating

electrons.34 This behaviour is exemplified in the ionisation of
phenols that are bonded to substituents such as NO2, as shown
in Fig. 1. This system is inadequately modelled by r, because
the original constants were obtained from benzoic acids, which
do not exhibit through-resonance, and hence the two systems
are not comparable. In order to overcome these failings, a new
set of parameters, known as r−, were introduced. The values
of these constants are derived from anilines and phenols, and
differ from the conventional Hammett constants for electron
accepting substituents (for example NO2). For other substituents
that cannot accept electrons, such as halogens and alkyl groups
for example, the differences are less pronounced. It should also
be noted that these constants only apply to substituents in the
para position. Strictly speaking, the r− scale was not introduced
nor defined for meta substituents and hence both sets of values,
r− and r, are exactly the same.

Fig. 1 Resonance structures for p-nitrophenol and the p-nitrophenol
anion.

We have performed a QTMS analysis on a set of 17 para-
substituted phenol molecules in order to gauge the ability of the
method to reproduce r− values. The structure and substituent
constants for the compounds are given in Table 1. The common
molecular skeleton is shown in Fig. 2. Sigma values were
obtained from ref. 34 and have been chosen to reflect a range of
electron-accepting/donating abilities. The PLS analysis returns
r2 = 0.983 and q2 = 0.938 with 3 LVs. An excellent model is
obtained, confirming the ability of our method to reproduce
Hammett constants for sets of compounds where there is
direct conjugation between the substituent and reaction center.
The model validates according to the randomisation test. An
observed versus predicted plot for the r− values is shown in
Fig. 3, illustrating the range and spread of the data.

Fig. 2 Numbered common skeleton of the p-phenol molecules.

In conjunction with the GA, the PLS analysis returns
improved correlation statistics: r2 = 0.993 and q2 = 0.969, now
with 4 LVs. The corresponding VIP plots, with and without the

Table 1 Substituents and r− values for the set of substituted phenols

Molecule Substituent r− Molecule Substituent r−

1 H 0 10 CN 1
2 OH −0.37 11 NO2 1.27
3 OCH3 −0.26 12 NH2 −0.15
4 C(CH3)3 −0.13 13 CF3 0.65
5 CH3 −0.17 14 CONH2 0.61
6 C6H5 0.02 15 CCH 0.53
7 F −0.03 16 CH(CH3)2 −0.16
8 Cl 0.19 17 COOCH3 0.64
9 Br 0.25
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Fig. 3 Observed versus predicted r− values for p-substituted phenols.

GA, are given in Fig. 4a and b, respectively. It can be seen that
the GA greatly reduces the number of independent variables,
from 52 (= 4 × 13) to 11 (Fig. 4a). In terms of the active center,
both procedures (the GA selecting BCP properties and the PCs
without GA involvement) highlight the OH bond (bond 7–8).
This is the bond one would expect to be the most important in
explaining the activity. Unfortunately, however, both methods
suffer from “contaminations” since variables with high VIP
scores cannot be directly related to the activity. Two variables
associated with bond 3–11 (a CH bond) are selected by the GA
and have a high VIP score; this bond is also given high priority
in the VIP plot for the PCs. It is difficult to reconcile these
bonds with the mechanism for phenol dissociation, although
it is pleasing to note that variables associated with the correct
bond do come top in both VIP plots. We note that in their study
on the identification of active molecular sites using quantum-
self-similarity measures Amat et al.35 also detected unexpected
fragments correlating strongly with r constants. These authors
suggested a possible explanation for this phenomenon based on
Mezey’s “holographic electron density theorem”.36

Substituted toluenes and r+

In addition to the r− constants, there also exist analogous r+

constants, which account for substituents with the ability of delo-
calising a positive charge. An example of where the r+ constants
have found considerable success is in describing electrophilic
aromatic substitution and electrophilic side-chain reactions. In
these reactions the stability of the transition state, and hence
reaction rate, is greatly influenced by through-resonance and
therefore unsatisfactorily correlated by the Hammett equation.
This problem was addressed by Brown and Okamoto,37 who
successfully correlated rate data for electrophilic aromatic
substitution with r+ constants derived from the solvolysis of
cumyl chlorides in 90% aqueous acetone. This has proven to

Table 2 Activity and r+ values for the set of substituted toluenes

Molecule Xa Ya r+b ,c Activityd log (activity)

1 H OCH3 −0.778 11.7 1.068
2 H CH3 −0.311 2.56 0.408
3 H t-C4H9 −0.256 2 0.301
4 CH3 H −0.066 1.52 0.182
5 H H 0 1 0.000
6 OCH3 H 0.047 0.75 −0.125
7 H Br 0.15 0.94 −0.027
8 H Cl 0.114 0.8 −0.097
9 H F −0.073 0.58 −0.237

10 COOH H 0.322 0.3 −0.523
11 H COOH 0.421 0.22 −0.658
12 Br H 0.405 0.24 −0.620
13 H CN 0.659 0.14 −0.854
14 CN H 0.562 0.11 −0.959
15 NO2 H 0.674 0.08 −1.097
16 H NO2 0.79 0.05 −1.301

a Fig. 8: X = meta,Y = para. b This sigma value is not a sum, but
simply refers to either the meta or para substituent. c Note that the
value for the para-chloro substituted molecule is slightly different to
the corresponding entry in Table 3. This is due to slight discrepancies
in the experimental papers from which the current values were drawn.
Although the r+ values should be the same in both tables the small
differences do not alter our findings. d Relative reactivities of substituted
toluenes toward N-bromosuccinimide (per hydrogen) at 80 ◦C in CCl4.

be an ideal model for systems capable of delocalising a positive
charge.

We have chosen to analyse a set of 16 meta and para-
substituted toluenes and their relative reactivities towards N-
bromosuccinimide, a bromination reaction that is well described
using r+. The reaction rate data (relative to toluene itself) were
taken from Walling et al.38 The substituent constant values were
obtained from Brown and Okamoto37 and are presented in
Table 2 (note that one of the substituents is always a hydrogen).
The common skeleton of the toluenes is shown in Fig. 5.

Fig. 5 Numbered common skeleton for the substituted toluenes.

Fig. 4 PLS analysis on para-substituted phenols. VIP values of descriptors: (a) BCP properties selected by the GA and (b) principal components
(without GA selection).
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Fig. 6 PLS analysis on substituted toluenes. VIP values of descriptors: (a) BCP properties selected by the GA and (b) principal components (without
GA selection).

The results of the PLS regression (randomization validated)
using all the BCP properties as descriptors, and the logarithm
of the relative rate of reactivity towards N-bromosuccinimide
as the dependent variable, are r2 = 0.917 and q2 = 0.817 for
only 1 LV. This is reasonable but not impressive considering
that regressing the reaction rate with r+ alone produces a
model with r2 = 0.955. In order to optimise the PLS model,
a GA was employed to select “successful” BCP properties as
descriptors. PCs were also extracted from the BCP properties
and used as descriptor variables in order to isolate the active
center. The fitness function was taken to be the cross-validation
error (q2) from a PLS analysis performed on the dataset using
variables selected by the GA. The regression statistics of the PLS
model fitted using the GA-selected BCP properties improved
considerably to r2 = 0.958 and q2 = 0.891 with 2 LVs. The
corresponding VIP plots, with and without the GA, are given in
Fig. 6a and b, respectively.

The model fitted using the GA selected BCP properties is
superior to the one obtained using all the properties, with the
predictivity in particular showing a marked improvement. The
statistics obtained are similar to those quoted by Walling et al.38

and confirm the ability of QTMS to successfully model a dataset
whose activities exhibit good correlations with another kind of
Hammett constant, r+. Indeed, fitting another PLS model using
the same GA-selected BCP properties as descriptors, regressed
against r+ itself, yields an excellent correlation with r2 = 0.973
and q2 = 0.930.

With regard to the active center in the molecules, both
methods agree that bond C7H8 (in the methyl group) is the
most important in producing good correlations. This makes
perfect sense, since one of the hydrogens on the methyl group
is abstracted in the formation of a X–C6–H5CH2

• radical. Thus
the C–H bond strength is crucial in determining the reaction
rate, which is why QTMS highlights this bond. In the VIP
plot for the variables selected by the GA (Fig. 6a) the top four
variables are all associated with the same bond, namely C7H8.
The VIP plot of the PCs (Fig. 6b) also places the C7H8 bond
top, along with the two other CH bonds in the methyl group.
This is to be expected since all three bonds are nearly identical
in terms of BCP property values, and the trends exhibited by
the properties. The construction of PCs guarantees a more
viable picture of the active center than one based on a GA
selected set of BCP properties. It is still reassuring to note that
there is a large discrimination between the three bonds in the
methyl group and the remainder of the bonds in the toluene
molecules. The methyl group can be considered the true reaction
center.

We just note here that an even sharper decline was found in
a VIP plot39 of BCP properties (without GA selection) in a set
of 68 substituted carboxylic acids, prominently highlighting the

O–H and C–O bonds in the COOH group (r2 = 0.926 and q2 =
0.904), as one would expect.

Bromophenethylamines and r+

To diversify the range of systems examined, we have looked
at a set of 20 meta-, para-, and disubstituted N,N ′-dimethyl-
2-bromophenethylamines. The bromophenethylamines are be-
lieved to exhibit anti-adrenergic activity via the formation of
benzylic cations, which the r+ constants are particularly well
suited to describing. The Hammett r+ values were obtained
from ref.40 Fig. 7 shows the common skeleton for this second set
of molecules and Table 3 contains the substituent data.

Fig. 7 Numbered common skeleton of the bromophenethylamines.

Again an excellent and valid model is produced, since r2 =
0.979 and q2 = 0.951 for 3 LVs. All the molecules are satisfac-
torily modelled, with no noticeable outliers, as can be seen from
the observed versus predicted plot in Fig. 8.

Table 3 Substituentsa (X and Y) and r+b values for the bromo-
phenethylamines

Molecule X Y r++b Molecule X Y r++

1 H H 0 11 Br F 0.34
2 H F −0.07 12 Me F −0.14
3 H Cl 0.11 13 Cl Cl 0.51
4 H Br 0.15 14 Br Cl 0.52
5 H Me −0.31 15 Me Cl 0.04
6 F H 0.35 16 Cl Br 0.55
7 Cl H 0.4 17 Br Br 0.56
8 Br H 0.41 18 Me Br 0.08
9 Me H −0.07 19 Me Me −0.38

10 Cl F 0.33 20 Br Me 0.1

a Fig. 5: X = meta,Y = para. b The r+ is actually a sum of the r+
m and r+

p

constants, as originally reported in ref. 41 However, it is more rigorous
(and common in the LFER literature) to use the symbol R r, since the
r+ scale has actually not been introduced for meta substituents.
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Fig. 8 Observed versus predicted r+ values for the bromophen-
ethylamines.

Due to the impressive statistics obtained using all the BCP
properties, it was deemed unnecessary to employ variable
selection for this dataset. However, a second PLS analysis was
performed on the molecules using PCs extracted from the BCP
properties in an effort to locate the active center. The VIP plot
for the PCs is shown in Fig. 9. It can be seen from the VIP
plot that the highlighted region in the molecules, as defined by
the VIP scores, is quite diffuse. Several bonds acquire similar
scores, and there is no clear drop-off in the values for the first
few descriptor variables. On the plus side, all the PCs with high
scores are associated with bonds on the side-chain attached to
the phenyl ring, which can be considered the reaction center for
this set of molecules as it is this group that bears the positive
charge upon formation of the benzylic cation.41 This positive
charge can be located on either the nitrogen attached to the two
methyl groups or the carbon attached to the bromine atom.

Benzyl radicals and non-Hammett behaviour

One of the most fundamental concepts behind the Hammett
equation is that of the electronic demand, which classifies each
substituent either as an electron donor or as an electron acceptor.
In other words, the substituent either supplies or removes
electron density from some reaction center, thereby shifting
the properties of a system in opposite directions. There are
occasions, however, when both types of substituent shift the
property of a system in the same direction.42,43 This anomaly
is known as non-Hammett behaviour. An example of this
phenomenon was already noticed more than 50 years ago44 in
the context of the substituent effect on radical stability, although
those authors did not explicitly use the term “non-Hammett
behaviour”. This term appeared a decade later, for example in
Walter’s work45 on substituents affecting the properties of stable
aromatic free radicals.

Given the success of QTMS in dealing with systems displaying
ordinary Hammett behaviour, the next logical step is to see
how the method performs with systems showing non-Hammett
behaviour.

Liu et al.43 have investigated the stabilities of 56 benzyl
radicals exhibiting various degrees of non-Hammett behaviour.
In this case the dependent variable is the reaction energy of the
isodesmic reaction shown in eqn 1, where all 14 X substituents
are always in the para position and Y = H, F, Cl or Li.

X–C6H4–CHY• + C6H6 → C6H5–CHY• + X–C6H5 (1)

Liu et al. computed the reaction energies at the B3LYP/6-
311++G(2d,2p)//B3LYP/6-31G(d) level with the B3LYP/6-
31G(d) zero point energies scaled by 0.9806. For our purpose
these reaction energies are adopted as independent observations
(i.e. Y variables), just as measured reactivities featured in the
set of bromophenethylamines. The authors correlated reaction
energies with both conventional Hammett parameters and a
variety of special scales of substituent constants used in radical
chemistry (r•). Here we focus on Jackson’s rJ constant,46 which
reflects carbon radical stability and which is suited to describing
non-Hammett behaviour.

We have examined the same set of 56(= 4 × 14) benzyl radicals
using QTMS in order to assess the ability of the method to deal
with non-Hammett datasets. Table 4 contains the substituent
data and reaction energies for the reaction shown in eqn 1.
The common skeleton of the molecules is shown in Fig. 10.
Table 5 shows the results obtained by Liu et al. correlating the

Fig. 10 Common skeleton and numbering scheme for the benzyl
radicals.

Table 4 Substituent and activity data for the benzyl radicals

Molecule Substituent Energy change/kJ mol−1

X Y = H Y = F Y = Cl Y = Li
1 CH3 1.1 1.1 1.6 −1.2
2 Cl 1.2 0.2 0.3 5.4
3 CN 5 4.1 2.8 18.8
4 COCH3 6.1 6 4.8 16.5
5 COOH 5.2 5.5 4.1 15.3
6 F −0.9 −2.1 −1.7 1.2
7 H 0 0 0 0
8 NO2 6.1 5.6 3.7 25.2
9 CONH2 3.7 3.4 2.5 12.4

10 SCH3 4.2 3.5 4.4 2.5
11 CF3 1.1 0.5 −0.3 11.4
12 N(CH3)2 5.6 5 7.4 −3.7
13 COOMe 4.3 4.7 3.6 12.3
14 SiMe3 2 2.1 2.2 2.5

Fig. 9 PLS analysis on bromophenethylamines. VIP values of principal component descriptors (without GA selection).
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Table 5 Regression correlation coefficients (r2) of the energy changes
of the isodesmic reaction (eqn 1) against different electronic descriptors

Y r+
p model rJ model BCP model

H 0.0004a 0.9604 0.505
F 0.0001 0.9025 0.567
Cl 0.1936 0.8464 0.446
Li 0.6400b 0.5776 0.973

a The twelve entries in this table must not be confused with the sigma
values themselves. b The r2 value for the rp

− model is 0.9801.

reaction energies with the conventional Hammett rp
+ constant

and with rJ. Note that the Hammett constants always refer to
the X substituents, not the Y substituents. Table 5 also lists
the results from the PLS regressions using BCP properties as
descriptors. Only r2 values are included, since these are the only
statistics included in the literature (i.e. no q2 values are quoted).
Again, all the models passed the validation test.

It can be seen that for all of the datasets, with the exception
of the one containing lithium (Y = Li), the substituent effect
on the reaction energy is poorly correlated by the conventional
Hammett constant r+

p . However, the rJ constants show the
opposite trend, producing good fits for three of the sets (Y=
H, F, Cl) but a poor correlation for the one containing lithium.
It is evident that r+

p and rJ are orthogonal to each other. BCP
properties exhibit a similar pattern to that of the r+

p values,
producing relatively poor correlations for the first three sets but
producing an excellent model for the set containing lithium.
Even though the BCP properties perform much better than r+

p

at modelling the datasets exhibiting non-Hammett behaviour,
the statistics are significantly inferior to those obtained using rJ

as the descriptor. From this, it is evident that BCP properties
are unable to capture non-Hammett behaviour. Nevertheless,
the BCP properties do produce an excellent correlation for the
lithium dataset, which exhibits strong conventional Hammett
behaviour. Thus this experiment, although unsuccessful at
capturing non-Hammett effects, reinforces the conjecture that
QTMS can act as a replacement for the conventional r constants.

QTMS, although unsuitable for reproducing non-Hammett
behaviour, can be used to model the r constant in radical
molecules. Previously only closed-shell species have been studied
with QTMS. These findings mean that QTMS, in addition to
being an ideal tool to study chemical reactions in a similar
manner to r, could be applied to the area of radical reactions,47

particularly in the area of toxicology, where many compounds
display a toxicity characterised by parameters such as r+.48

Toxicity of benzyl alcohols

In their paper on the toxicology of benzyl alcohols Kapur
et al.49 state that there is evidence that these compounds exhibit
toxicity via a radical mechanism. To test that possibility they
studied the toxicity of 13 para-substituted benzyl alcohols on
rapidly dividing cancer cells. In their QSAR analysis they could

find no evidence for an electronic effect but showed that the
cellular toxicity was associated primarily with hydrophobicity.
The activity data [log(1/C)] are listed in Table 6. Note that
the observables are not Hammett constants but the original
activity data [log (1/C))]. The point of this QTMS test case is
to show that it fails when Hammett constants fail as well. In
other words, both Hammett constants and QTMS descriptors
are independently confronted with the original log(1/C) data. In
such negative test cases it would be meaningless to use Hammett
constants as observables.

Using log P alone as a descriptor, Kapur et al. obtained a
relationship with r2 = 0.87 and q2 = 0.80 (although only 11
compounds were included, as the C(CH3)3 and NH2 analogues
were found to be outliers). The homolytic bond dissociation en-
ergy (BDE) is a direct estimate of the energy for abstraction of a
hydrogen by a phenoxy radical. The BDE values of phenols have
been shown50 to correlate well with r+. However, addition of the
r+ term did nothing to improve the correlation, nor did the inclu-
sion of steric parameters. From this, the authors concluded that
the benzyl alcohols exert their cytotoxicity via a polar narcosis
mechanism that is sharply delineated by hydrophobicity alone.

In the QTMS analysis only the parent (i.e. non-radical)
form of the benzyl alcohols provided the descriptors. The
QTMS analysis failed to produce a model at all for this set
of compounds. The first latent variable formed by SIMCA-P
was found to be statistically insignificant (that is, its q2 value
was less than 0.097). The strong negative result adds weight
to the conjecture that QTMS is only picking up electronic
effects. Indeed, QTMS is unsuitable for modelling datasets where
lipophilicity is the dominant factor in determining the activity.

Herbicidal activity of 5-chloro-2,3-dicyanopyrazines

Nakamura et al.51 have reported the herbicidal activity of a set of
5-chloro-2,3-dicyanopyazines against barnyard grass. This grass
is in competition with rice crops and selectivity toxic agents
are actively sought. Here the activity is expressed as the pI 50

value, which is the negative logarithm of the molar extracellular
concentration required for 50% growth inhibition. The common
skeleton for the dataset is given in Fig. 11. Table 7 shows the

Table 7 Substituent and activity data for the dicyanopyrazines

Molecule R pI 50 Molecule R pI 50

1 H −0.59 12 OPh −0.07
2 Me −0.03 13 SMe −0.02
3 Et 0.06 14 SEt 0.01
4 n-Pr −0.01 15 SPh −0.6
5 n-Bu −0.13 16 NHMe −0.22
6 CH2Ph −0.2 17 NHEt −0.01
7 Ph −0.1 18 NH-n-Bu 0.5
8 OMe −0.44 19 NMe2 0.24
9 OEt −0.1 20 NHPh 0.11

10 O–n-Pr 0.24 21 Cl −0.53
11 O–iso-Pr 0.3

Table 6 Substituent and activity data for the para-benzyl alcohols

Molecule Substituent log[1/IC50]
a Molecule Substituent log[1/IC50]

1 CN 2.46 8 COOCH3 2.47
2 C6H5 3.48 9 H 2.34
3 C(CH3)3 2.97 10 CH3 2.77
4 Cl 2.75 11 Br 3.22
5 SCH3 2.82 12 OC4H9 3.52
6 NO2 2.56 13 OCH3 2.53
7 NH2 2.82

a The activity is defined as the negative logarithm of the molar concentration required to produce 50% inhibition of cell growth in 48 hours (IC50).
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Fig. 11 Common skeleton and numbering scheme for the
dicyanopyrazines.

substituent and activity data of the 21 compounds. Nakamura
et al. examined this set using p2 and p as lipophilic descriptors
and rp as an electronic descriptor, obtaining a model with an
r2 of 0.891. Hence one might conclude that electronic effects
are of significance for this dataset. Hansch, however, has also
reformulated34 this QSAR, and suspected that the rp term was
“at least in part, a correction on p”. His judgement was based
on the fact that lipophilic parameters used in Nakamura’s study
were derived from the benzene system and these parameters
are not readily transferable to the pyrazine system (occurring
in the title compound). If this is the case, then the electronic
term may not be of physical significance and the activity is
wholly dependent on the lipophilicity. QTMS can provide an
independent opinion in order to resolve this quandary.

A QTMS analysis,21 without GA, yields a validated model of
1 LV with r2 = 0.33 and q2 = 0.15. A second analysis, now with
a GA, results in a 1-LV model with r2 = 0.46 and q2 = 0.35,
selecting for inclusion in the PLS analysis the Laplacian of the
C7N8 and C4N5 bonds, and the ellipticities of the C5Cl11 and
C9N10 bonds. Although a better model, even the GA cannot
lift the predictivity of the model above random (since q2 is
still smaller than 0.5). It is clear that BCP properties fail to
serve as meaningful descriptors from which a highly predictive
model can be constructed. Based on previous test cases BCP
properties emerge as purely electronic descriptors, and hence
QTMS supports Hansch’s view that only lipophilic descriptors
are in charge.

At this point a further question21 suggests itself. If rp

acts merely as a correction term, why do the BCP variables
themselves not act in the same manner? The answer lies in the
default selection criteria for the LVs employed in SIMCA–P. A
PLS regression that includes the BCP variables and the p and p2

terms produces only one LV. If we subject Nakamura’s original
data (p, p2 and rp parameters) to PLS analysis we find that only
two LVs are produced by SIMCA-P’s selection criteria and an r2

of 0.47 is found. A third LV is needed to give the QSAR reported
by Nakamura. However, the third LV is not significant within
our cut-off limits. Hence the QSAR equation of Nakamura et al.
is not validated by our criteria. This reason, combined with the
likely physical insignificance of rp, explains why we are unable
to obtain a good QSAR for the herbicidal activity of this series
of molecules.

Chromatographic capacity factors of chalcones

Reversed-phase liquid chromatography has found application in
QSAR studies as a rapid means of evaluating physicochemical

properties of organic molecules, in particular log P. These
properties are obtained from the chromatographic capacity
ratios (denoted by k′

φ , where φ is the volume fraction of organic
modifier in the eluent) by correlating the two sets of values via
linear regression (eqn 2):

log P = a log k′
φ + b (2)

If the capacity factors are known then one can also obtain a
value for the octanol–water partition coefficient. Luco et al.52

have investigated the reversed-phase liquid chromatographic
hydrophobicity parameters for several chalcone molecules in an
effort to determine qualitative hydrogen bonding information
from the chromatographic information obtained. The com-
mon skeleton for the chalcones is given in Fig. 12 and the
substituent and activity data are given in Table 8. Here the
activity QTMS attempts to model is log K ′

w, the logarithm
of the capacity factor extrapolated to 100% water in the
eluent.

Fig. 12 Common skeleton and numbering scheme for the chalcones.

The combination of variables, included in the PLS analysis
after GA variable selection, failed to produce any kind of
model. Indeed, the first LV that SIMCA-P generated yielded
q2 < 0.097. Repeating the PLS analysis using all the BCP
properties also failed to produce a model. Given the obvious
importance of the hydrophobicity in determining the value of
the dependent variable for this dataset, it is unsurprising that
QTMS fails. Again, this result can be interpreted as support for
the discriminatory power of QTMS and its inability to model
hydrophobic effects.

Finally, it is worth mentioning that alternative quantum
molecular similarity measures53–57 are able to describe both polar
substituents effects58 and hydrophobicity.59

Conclusion
Many complex QSARs, whether medicinal or ecological, benefit
from a multitude of Hammett constants to describe electronic
effects. Although many Hammett constants have been listed,
there is no guarantee that every possible substituent has
been covered in every set of congeneric molecules. Moreover,
since the Hammett constants are rooted in physical organic
chemistry every application requires the use of the correct type

Table 8 Substituent and activity data for the chalcones

Molecule R1 R2 R3 R4 R5 log K ′
w Molecule R1 R2 R3 R4 R5 log K ′

w

1 H H H H H 3.591 9 OH H H OH H 3.371
2 OH H H H H 4.147 10 OH H H H OH 3.371
3 H H H H OH 3.175 11 OH H H H OMe 4.169
4 H H H H F 3.639 12 OH H OMe H H 4.414
5 H H H H Me 4.072 13 OH OMe OH H H 3.664
6 H H H H NO2 3.621 14 OH H H H Cl 4.646
7 H H H H Cl 4.139 15 OH H H H F 4.131
8 OH H OH H H 3.478
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of constant. This decision is typically guided by back-of-an-
envelope arguments of traditional synthetic organic chemistry.
With the advent of current computing power it is now possible to
construct excellent QSARs overnight, linked to QCT descriptors
directly drawn from modern solutions of the Schrödinger
equation.

Early indications that QCT descriptors are highly correlated
to Hammett constants were obtained from a set of carboxylic
acids. In the current work, we have succeeded in proving that this
assertion is more universal. We have shown that QTMS is capa-
ble of successfully modelling datasets where through-resonance
effects are of importance. The range of Hammett parameters
reproduced by QTMS has been extended to incorporate the r+

and r− constants, in addition to extending the range of molecular
systems examined, including radicals. Meaningful active centers
were highlighted. The evidence accumulated here suggests that
QCT descriptors can most likely provide a reliable model to
predict any type of Hammett constant.

Secondly, we have shown that QCT descriptors are purely
electronic in nature. They fail to produce statistically valid
QSAR models when lipophilicity/hydrophobicity are the ruling
descriptors. The analysis of three sets (toxicity of benzyl alco-
hols, chromatographic capacity factors of chalcones, herbicidal
activity of 5-chloro-2,3-dicyanopyrazines) show the discrimina-
tory capacity of QCT descriptors. If they do not work then
electronic effects are not in charge.

So, overall, when confronted with a measured activity (possi-
bly of complex biological nature) the QCT descriptors have the
correct flexibility to construct a reliable QSAR to predict this
activity, and one is guaranteed that this is not because of steric
effects of lipophilicity. A valid model can be obtained without
invoking Hammett constants, thereby taking away the concern
about which type of constant to invoke or whether the given
substituent’s constant is in the database.
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